
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-127-133 ISSN: 2249-6645

Abstract— Over the past few years, injection

vulnerabilities have become the primary target for

remote exploits. SQL injection, command injection,

and cross-site scripting are some of the popular

attacks that exploit these vulnerabilities. Many web

applications written in ASP suffer from injection

vulnerabilities, and static analysis makes it possible to

track down these vulnerabilities before they are

exposed on the web. In this paper we propose a new

technique to detect XSS attacks and SQL injection

vulnerabilities based on taint analysis, It tracks

various kinds of external input, tags taint types,

constructing control flow graph is constructed based

on the use of data flow analysis of the relevant

information, taint data propagate to various kinds of

vulnerability functions, and detect the XSS or SQL

Injection vulnerability in web application’s source

code. Results show the benefits of the tool in

identifying potential security vulnerabilities.

Index Terms— W3; SQL Injection; XSS.

I. INTRODUCTION

Web applications are growing more and more

popular as both the availability and speed of the

internet increase. Many web servers nowadays are

equipped with some sort of scripting environment

for the deployment of dynamic web applications.

However, most public web hosting services do not

enforce any kind of quality assurance on the

applications that they run, which can leave a web

server open to attacks from the outside[1].

Poorly written web applications are highly

vulnerable to attacks because of their easy

accessibility on the internet. One careless line of

program code could potentially bring down an

entire computer network. The reasons for the

increase of threats in Web application [2,3] could be

divided into two main parts: On one hand, software

are developing in too large a scale together with the

expanding complexity and extensibility of software

while flaws still exist in their source codes; On the

other hand, This is probably due to ease of detection

and exploitation of web vulnerabilities, combined

with the proliferation of low-grade software

applications. At the moment, the overflow of Web

application programs and Plug-in lead to the result

that much of the code is alpha or beta, written by

inexperienced programmers with easy-to learn

languages such as ASP (Active Server Pages).

Such software is often rife with

easy-to-find vulnerabilities, even malicious

hideaway back door. For instance, injection threats

exist in the early version of Eweb editor and the

fckeditor. Security problem in software refers to

threats incurred because of the flaws in software

research, designation, programming, testing and

implementation [4]. They are taken use of by

attackers so as to change the function of the software

from original intention of the software designers. As

a typical Web application attacks, the most popular

is the SQL injection and XSS, because the most

basic data manipulations for these vulnerabilities

are very simple to perform, e.g. '‟' for SQL injection

and '<script> alert('hi') </script>' for XSS [5]. This

makes it easy for beginning researchers to quickly

test large amounts of software.

II. RELATED WORK

Static analysis security tools attempt to find security

vulnerabilities without executing the software by

scanning the source code for known potentially

security-compromising functions[6]. They then

perform analyses to try to determine if, indeed, a

function call could be maliciously attacked. These

LENKA

L. VENKATA SATYANARAYANA,
2/2 M.TECH CSE, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI,

ANDHRA PRADESH, INDIA.

M.V.B.CHANDRA SEKHAR,
ASSOCIATE PROFESSOR,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI,

ANDHRA PRADESH, INDIA.

STATIC ANALYSIS TOOL FOR DETECTING WEB

APPLICATION VULNERABILITIES

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-127-133 ISSN: 2249-6645

tools cannot guarantee to find all security

vulnerabilities in a program and often report many

false positives (those potential vulnerabilities

reported by a tool which are not actual

vulnerabilities).

In 2005 and 2006, XSS was number 1, and

SQL injection was number 2 [7]. In 2009 around

domestic college entrance examination online

enrollment, the domestic university's admission

websites suffer the threat by “Trojan horse” attack,

when the user visits the page that attacked by XSS,

the user‟s sensitive data are stolen. These explained

that strengthens the Web application security the

work to be urgent. ITS4 was one of the first

available static security analysis tools to search C

source code looking for potentially dangerous

function calls [8]. ITS4 performs limited analysis to

determine how risky a function call is and, for every

problem reported provides suggestions how to

mitigate the security vulnerability. RATS is similar

to ITS4 in its approach but performs additional

analysis to attempt to reduce the number of false

positives reported [9]. Unlike ITS4, however, RATS

performs analysis to discover Time Of Check, Time

Of Use race conditions.

Splint (Secure Programming Lint) is an

improvement over another static security analysis

tool, Lint [10] that does additional analysis on

potential security vulnerabilities beyond both ITS4

and RATS. Other tools perform different analysis

techniques to try and discover a different type of

security vulnerability or eliminate a different type of

false positives. For example, BOON [11] performs

analysis focusing primarily on the detection of the

buffer overflow security vulnerability whereas Flaw

Finder [12] uses a vulnerability database as does

ITS4 and RATS. Thus, different tools often produce

different sets of results.

III. SYSTEM ARCHITECTURE

A web application, as the name implies, is a

computer application that is accessed through a

web-based user interface. This is typically

implemented through a client-server setup, with the

server running an HTTP server software package

(such as Apache or Microsoft IIS) capable of

generating dynamic web pages, while the client

communicates with the server through a web

browser (such as Microsoft Internet Explorer or

Mozilla Firefox). The working of such a web

application is roughly sketched in Figure 1.

Fig 1 System architecture

Whenever the client interacts with the

server, communication takes place in the form of

HTTP requests. The client sends a request (typically

a GET or POST request) to the server, along with a

series of parameters (step 1 in Fig. 1). The HTTP

server recognizes that this is a request for a dynamic

web page, in this case a page that is to be generated

by a ASP script. It fetches the corresponding ASP

script from the web server's file system (step 2) and

sends it off to be processed by the integrated ASP

interpreter (step 3). The ASP interpreter then

executes the ASP script, making use of external

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-127-133 ISSN: 2249-6645

resources whenever necessary. External resources

can for example be a database (steps 4 and 5), but

also the file system or an API exposed by the

operating system. The executed ASP script typically

produces output in the form of an HTML page,

which is sent back to the client and displayed in the

web browser (step 6).

The most prevalent and most exploited

vulnerabilities in web applications are cross-site

scripting (XSS) and SQL injection (SQLI).

According to a top ten composed by the Open Web

Application Security Project (OWASP), XSS and

SQLI were the top two most serious web application

security flaws for both 2007 and 2010 [13].

According to this list, the top five of security flaws

has not changed over the past three years.

Vulnerabilities occurring in real-world applications

are much more complicated and subtle than the

examples appearing in this section. In many cases,

user data is utilized in applications in ways that

appear to be safe on the surface. However, due to

complex interactions that is difficult to predict,

unsafe data can still slip through in specific edge

cases. Such vulnerabilities are hard to spot, even

when using professional coding standards, careful

code reviewing, and extensive testing.

A. Cross-Site Scripting

Cross-site scripting (XSS) is a type of vulnerability

that allows attackers to inject unauthorized code

into a web page, which is interpreted and executed

by the user's web browser. XSS has been the number

one web application vulnerability for many years,

and according to White Hat Security, has been

responsible for 66% of all website attacks in 2009

[14].

Web pages can include dynamic code

written in JavaScript to allow the web page's content

to be altered within the web browser as the user

interacts with it. Normally, a web browser will only

execute JavaScript code that originates from the

same domain as the web page itself, and that code is

only executed within a self-contained sandbox

environment. This is the so-called Same Origin

Policy [15]. This policy prevents attackers from

making web browsers execute un-trusted code from

an arbitrary location.

1

2

3

4

5

6

7

8

9

<html>

<body>

 <%

 „Re t r i e v e the user ' s name from a

form

 name = Request.Response('name')

 // Pr int the user ' s name back to them

 Response.write "Hello there , $name!

How are you doing?"

%>

</body>

</html>

Fig 2. Example of an XSS vulnerability

B. SQL Injection

SQL injection is a taint-style vulnerability, whereby

an unsafe call to a database is abused to perform

operations on the database that were not intended by

the programmer. White Hat Security's report for

2009 lists SQL injection as responsible for 18% of

all web attacks, but mentions that they are

under-represented in this list because SQL injection

flaws can be difficult to detect in scans [14].

SQL, or Structured Query Language, is a

computer language specially designed to store and

retrieve data in a database. Most database systems

(e.g. MySQL, Oracle, Microsoft SQL Server,

SQLite) use a dialect of SQL as a method to interact

with the contents of the database. Scripting

languages such as PHP o_er an interface for

programmers to dynamically construct and execute

SQL queries on a database from within their

program.

It is common practice for programmers to

construct dynamic database queries by means of

string concatenation. Listing 2 shows an example of

an SQL query that is constructed and executed from

a PHP script using this method. The variable

$username is copied directly from the input

supplied by the user and is pasted into the SQL

query without modifications. Although this query is

constructed and executed on the server and users

can not directly see the vulnerable code, it is

possible through a few assumptions and educated

guesses to find out that there is a database table

called users and that the entered user name

The test method of common SQL Injection

attack is the use “ ' ”, “ union ”, “ --; ” and so on key

words, in test dynamic SQL sentence in program

whether to exist injection vulnerability. For

example, consider the login page of a web

application that expects a user-name and the

corresponding password. When the credentials are

submitted, they are inserted within a query template

such as the following:

“select * from admin where username =‟” +

request.form(“username”) + “„ and Password = „” +

request.form(“passwd”)+“‟”

Instead of a valid user name, the malicious

user sets the “username” variable to the string:‟ or

1=1; - -‟, causing the Vbscript to submit the

following SQL query to the database:

“select * from admin where username = „‟ or 1=1

； - -„„ and Password = „ any_passwd‟ ”

Therefore, the password value is irrelevant

and may be set to any character string. The result set

of the query contains at least one record, since the

“where” clause evaluates to true. If the application

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-127-133 ISSN: 2249-6645

identifies a valid user by testing whether the result

set is non-empty, the attacker can bypass the

security check.

IV. STATIC ANALYSIS METHODS

Detection software security vulnerabilities are

mainly dynamic analysis, formal method validation

and static analysis. Static analysis is divided as type

inference, data flow analysis and constraints

analysis [1,16,17].

A. Type Inference

Type system of programming language concludes

type definition and rules for type equivalence, type

inclusiveness and type dedication. Type dedication

is to derive the types of variables and methods

within a program automatically so as to determine

whether or not their visit meet these type rules. This

kind of dedication could be used to examine the bug

in types and conduct necessary type transmission

with proper operations. It boasts the characteristics

of simplicity and high efficiency which makes it

perfect for quick detection of security threats in

software. Now it is mainly applied in detection of

format string vulnerability, OS kernel vulnerable

pointer use.

B. Data-Flow Analysis

Data-flow analysis is used in the process

programming, which collect semantic information

from programs and then define and use the variables

with algebraic approach. It is used in program

optimization, program validation, debugging,

parallel, Vectorization and serial program

environment. Its realization makes use of the pair

"variable definition-quoting".

C. Constraint Analysis

Constraint analysis divides program analysis into

constraint generation and constraint solution. The

former constructs variable type with constraint

generation rules or analyses constraint system

among statuses. While the later solve such

constraint systems. Constraint system is comprised

of equation constraint, set constraint and

incorporate constraint. In the first kind, only

equation exists between constraint objects. Set

constraint takes program variables as a set of values,

whose evaluation is regarded as conclusion relation

between set expressions? While the last constraint

concludes equation constraint part and set

constraint part.

D. The Comparison among three Main methods

The three main methods mentioned are all explain

the abstract semantics of programs and construct

mathematic models based on the program property,

with which they determine the property of the

program. In comparison, constraint analysis boasts

the greatest ability in detection while the lowest

speed of that, which makes it fit for security

examination of software, data-flow analysis has

relatively high speed and remarkable ability of

detection which is appropriate in static analysis

which should take control flow information and

requires only simple operation among variable

properties; when it comes to type dedication, it has

the poorest ability and the fastest speed in

examination and suits for security test in finite

property domain and unrelated control flow.

The website that issued news or BBS forum is one

kind of web application. Analyzing the logic

characteristics of its services, it is not complex to

find out that the process of dataflow could be give a

summaries: data input (parameters) → data service

processing (web server)→result output (HTML).

Based on principles of XSS threats and

SQL injection threats, we could see vulnerability is

mainly generated from the sanitation process of

input data. Thus sanitation process of all the input

data would neglect such vulnerability of taint data

(outside client input data). In this paper, we would

examine the code with data flow analysis; the

function framework of system is shown in fig 2.

Fig 3. Function Framework of Code Review System

V. RESULTS

To test the validity of our approach, we select three

open source program written by ASP. These

software are commonly used a source codes of tools

in network application layer and are representative.

Test environment: Intel XEON CPU: 3.0GHz, 1GB

cache, Windows 2003 Server，IIS6.0. Then we

conduct penetrating examination in Acunetix Web

with the results shown in Fig 4. We develop a tools

named as ASPWC. The number of XSS reported by

Acunetix Web tools is success of the XSS attack test.

Possible SQL Injection vulnerability through data

that is read from the Request object without any

input validation. These warnings are very likely

bugs that must be fixed. Sample Web Page is shown

in Fig 4

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-127-133 ISSN: 2249-6645

Fig 4 Sample web page

Fig 5 Output from our tool

Comments: strAuthor is assigned a value from Request.QueryString(“AUTHORNAME”) on line number 11 and

is eventually used in the construction of dynamic SQL and executed through OBJCOMMAND on line number 37

Use parameterized SQL query to mitigate the SQL Injection identified by the tool

Table 1 Sample Code

' Execute the command

strCmd = "select title, description from books where author_name = ?"

Set objCommand.ActiveConnection = objConn

objCommand.CommandText = strCmd

objCommand.CommandType = adCmdText

Set param1 = objCommand.CreateParameter ("author", adWChar,

adParamInput, 50)

param1.value = strAuthor

objCommand.Parameters.Append param1

Possible SQL Injection vulnerability through data that is read from the Request object where the input is passed

through some unknown function calls that might perform data validation. If there is no data validation done

inside the function call, then these are likely bugs else these are likely false positives

Fig 6 Sample web page

Fig 7 Output from our tool

The experimental results analysis: experimental data can

be seen from the above, based on control flow graph;

data-flow analysis of the vulnerability detection algorithm

can be effectively used to detect XSS, SQL injection

vulnerabilities which exist in the source code. The blacklist is

applied to check the input data in OK3W and Leichinews

program. They have a common function to check all input

string. The programs produce a certain false positive. Despite

the weaknesses found in the report contains false positives,

reporting the total number of articles, or less, from the

relatively small number of reports of these find the true

vulnerabilities have been greatly reduced the workload.

VI. CONCLUSIONS

Software needs to be secure in order to allow parties of

different trust levels to interact with each other, without

risking that un-trusted parties exploit critical parts of the

software. Web applications are mostly susceptible to input

validation vulnerabilities, also known as taint-style

vulnerabilities, the most common of which are cross-site

scripting and SQL injection. Because web applications are

made to be easily accessible through the internet, they are

particularly exposed to attacks.

Static analysis allows programmers to look for

security problems in their source code, without the need to

execute it. Static analysis tools will always produce false

positives and false negatives, because they need to make

trade-offs between accuracy and speed, and because program

analysis is inherently un-decidable.

This tool has manifests its usefulness in examining the web

sites based on ASP of the virtual host computer in a high

school. Despite the fact that fault rate remains high now, we

would use data-flow analysis and add rules to detect sensitive

information so as to yield higher accuracy of examination in

source code and lower false positive amount within an

acceptable bound.

REFERENCES

[1] Brian Chess, Jacob West (2007). “Secure Programming with Static

Analysis". Addison-Wesley. ISBN 978-0321424778.

[2] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, Chung-Hung Tsai.

\Web Application Security Assessment by Fault Injection and Behavior

Monitoring". In Proceedings of the Twelfth International Conference on

World Wide Web (WWW2003), pages 148-159, May 21-25, Budapest,

Hungary, 2003.

[3] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D.T. Lee,

Sy-Yen Kuo. Verifying Web Applications Using Bounded Model

Checking". In Proceedings of the 2004 International Conference on

Dependable Systems and Networks (DSN2004), pages 199-208,

Florence, Italy, Jun 28-Jul 1, 2004.

[4] Gray McGraw. Software Security. IEEE Secruity & Privacy[J].

March-April 2004,2(2):80-83

[5] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for Java.

In Twenty-First Annual Computer Security Applications Conference

(ACSAC), 2005.

[6] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D.T. Lee,

Sy-Yen Kuo. Securing Web Application Code by Static Analysis and

Runtime Protection". In Proceedings of the Thirteenth International

World Wide Web Conference (WWW2004), pages 40-52,New York,

May 17-22, 2004.

[7] Steve Christey, Robert A. Martin. Vulnerability Type Distributions in

CVE.[EB/OL].2007:V1.1, (2007 -5-22).

[8] Viega, J., Bloch, J. T., Kohno, T. and McGraw, G. ITS4: A Static

Vulnerability Scanner for C and C++ Code. In Proc. 16th Computer

Security Applications Conferences pp. 257- 266, New Orleans, LA,

2000.

[9] RATS: Rough Auditing Tool for Security.

http://www.securesoftware.com/resources/tools.html.

[10] Splint: Secure Programming Lint. http://www.splint.org/.

[11] Wagner, D. BOON: Buffer Overrun Detection.

http://www.cs.berkeley.edu/~daw/boon/.

[12] FlawFinder Home Page. http://www.dwheeler.com/flawfinder/

[13] OWASP: Top Ten Project.

http://www.owasp.org/index.php/OWASP_Top_Ten

[14] The WhiteHat Website Security Statistics Report - 8th Edition - Fall

2009.http://www.whitehatsec.com/home/resource/stats.html

[15] David Scott, Richard Sharp. “Abstracting application-level web

security”. In Proceedings of the 11th international conference on World

Wide Web (WWW2002), pages 396-407, Honolulu, Hawaii, May

17-22, 2002.

[16] Xia Yiming. Security Vulnerability Detection Study Based on Static

Analysis[J]. Computer Science, 2006, 33(10): 279-283.

[17] Paul Biggar, David Gregg. “Static analysis of dynamic scripting

languages". August, 2009

http://www.securesoftware.com/resources/tools.html
http://www.splint.org/
http://www.cs.berkeley.edu/~daw/boon/
http://www.dwheeler.com/flawfinder/
http://www.owasp.org/index.php/OWASP_Top_Ten

